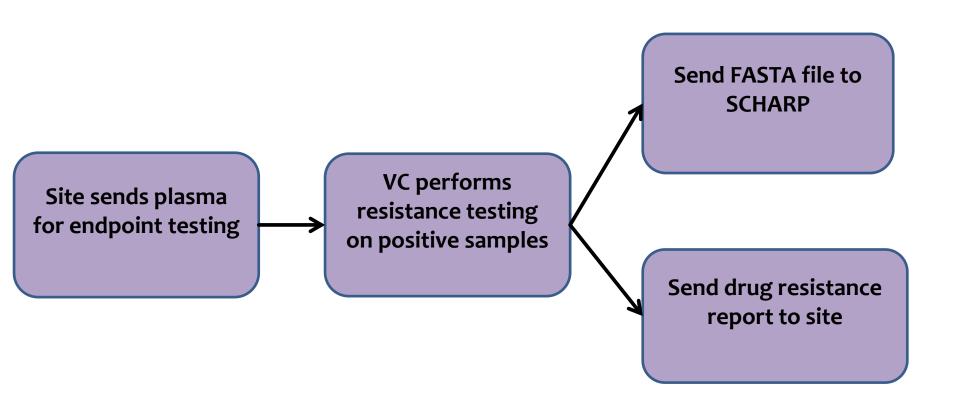


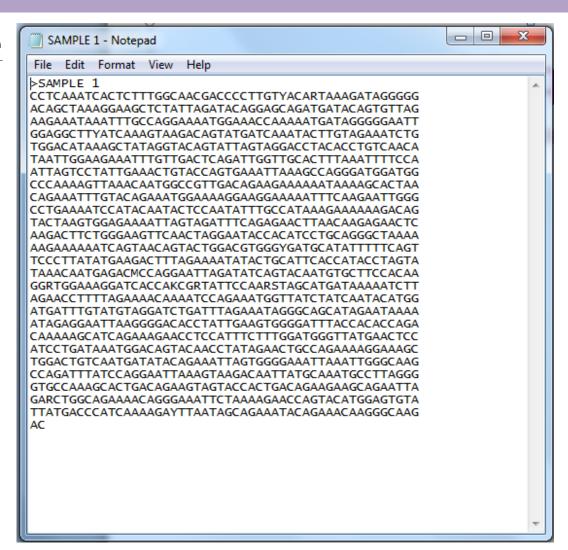
HIV Drug Resistance Testing Using the Stanford University Drug Resistance Database

Amy Opest, MS
Laboratory Manager
MTN Virology Core
10/07/2015


Overview

STANFORD UNIVERSITY HIV DRUG RESISTANCE DATABASE

A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.


- How do we generate sequences at the VC?
- What is the Stanford Resistance Database?
- How do we generate the resistance report that is sent to sites?

Virology Core Resistance Testing

Final Result – FASTA file

FASTA file

Stanford University HIV Drug Resistance Database Website

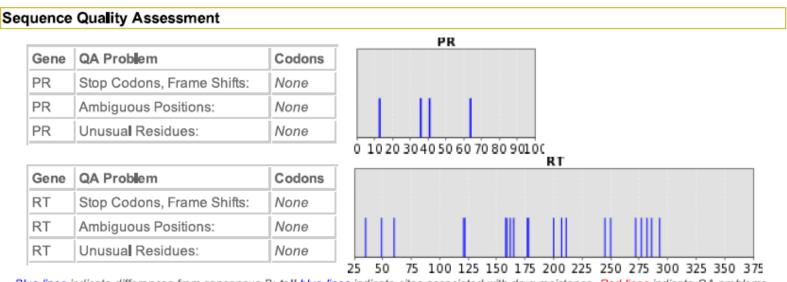
- An online database created from published HIV sequences.
- Three main types of content:
 - Database queries and references
 - Info relating to genotype-treatment correlations, genotypeclinical outcome correlations, references, new submissions to database
 - 2. Interactive programs
 - HIVdb program, HIValg program, HIVseq program, ART-AiDE, Rega HIV-1 subtyping tool
 - 3. Educational resources.
 - Drug resistance summaries, surveillance drug resistance mutation list

Interactive Programs

- HIVdb Program
 - May enter a list of mutations
 - May enter a complete sequence containing protease,
 RT and/or integrase
 - VC uses option 2 to generate drug resistance report which contains:
 - 1. Summary Data
 - 2. Sequence Quality Assessment
 - 3. Drug resistance Interpretation
 - 4. Mutation scoring table

- Stanford HIV Drug Resistance Database Output
 - Summary Data → Defines sample subtype, region of HIV, QC summary

Summary Data


Sequence includes PR: codons: 1 - 99 Sequence includes RT: codons: 1 - 334

There are no insertions or deletions

Subtype and % similarity to closest reference isolate:

PR: D (97.0%)
 RT: D (95.9%)

- Stanford HIV Drug Resistance Database Output
 - 2. Sequence Quality Assessment → a quality assessment sequence analysis (insertions, deletions, unusual bases)

- Stanford HIV Drug
 Resistance Database
 Output
 - 3. Drug resistance
 Interpretation → Scans
 sequence for any mutations
 that are associated with 19
 commonly used protease,
 nucleoside reverse
 transcriptase and nonnucleoside reverse
 transcriptase inhibitors.

PI Major Resistance Mutations: None PI Minor Resistance Mutations: None Other Mutations: I13IV, M36I, R41K, I64V Protease Inhibitors atazanavir/r (ATV/r) Susceptible darunavir/r (DRV/r) Susceptible for amproparative (FPV/r) Susceptible

darunavir/r (DRV/r)	Susceptible
fosamprenavir/r (FPV/r)	Susceptible
indinavir/r (IDV/r)	Susceptible
Iopinavir/r (LPV/r)	Susceptible
nelfinavir (NFV)	Susceptible
saquinavir/r (SQV/r)	Susceptible
tipranavir/r (TPV/r)	Susceptible

Drug Resistance Interpretation: PR

PR Comments

Drug Resistance Interpretation: RT

NRTI Resistance Mutations: None
NNRTI Resistance Mutations: None

Other Mutations:

None V35T, K49R, V60I, D121Y, K122E, A158AS, I159IV, S162AGST, T165**I**,

D177E, [178M, T200], Q207G, R211K, V245E, D250E, A272P, K277R,

L282C, T286A, I293V

N	ucleoside RTI	Non-Nucleoside RTI				
lamivudine (3TC)	Susceptible	efavirenz (EFV)	Susceptible			
abacavir (ABC)	Susceptible	etravirine (ETR)	Susceptible			
zidovudine (AZT)	Susceptible	nevirapine (NVP)	Susceptible			
stavudine (D4T)	Susceptible	rilpivirine (RPV)	Susceptible			
didanosine (DDI)	Susceptible					
emtricitabine (FTC)	Susceptible					
tenofovir (TDF)	Susceptible					

- Stanford HIV Drug Resistance Database Output
 - **4. Mutation scoring** → each mutation is given a score based on Stanford's internal algorithm. The score determines the level of resistance.

(higher score = greater resistance)

Genotypic Score	
0 – 9	Susceptible
10 – 14	Potential Low-Level Resistance
15 – 29	Low-Level Resistance
30 – 59	Intermediate Resistance
≥ 60	High-Level Resistance

Mutation Scoring												
PR	ATV/r	DRV	r FP	V/r II)V/r	LPV/r	NFV	SQ	//r	TF	PV/r	
Total:	0		0	0	0	0	0)	0		0	
RT	3ТС	ABC	AZT	D4T	DDI	FTC	TDF	EFV	ET	R	NVP	RPV
K103N	-	-		-	-	-	-	60		0	60	0
Y188L		-	-	-	-	-	-	60		15	60	60
Total:	0	0	0	0	0	0	0	120	1	15	120	60

Examples

A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

http://hivdb.stanford.edu/